پنجشنبه, ۱۹ آذر ۱۳۹۴، ۱۲:۴۵ ق.ظ
مسابقه درخت بازهای
مسابقه مربوط به مبحث درخت بازهای ست شده. مباحث مربوط به اون رو میتونید تو قسمت زیر بخونید.
همچنین کد مربوط بهش رو میتونید تو ادامه مطلب ببینید سعی کنید از کد آماده استفاده کنید تا به سوالات جواب بدید.
pass:euler
/**
* In this code we have a very large array called arr, and very large set of operations
* Operation #1: Increment the elements within range [i, j] with value val
* Operation #2: Get max element within range [i, j]
* Build tree: build_tree(1, 0, N-1)
* Update tree: update_tree(1, 0, N-1, i, j, value)
* Query tree: query_tree(1, 0, N-1, i, j)
* Actual space required by the tree = 2*2^ceil(log_2(n)) - 1
*/
#include<iostream>
#include<algorithm>
using namespace std;
#include<string.h>
#include<math.h>
#define N 20
#define MAX (1+(1<<6)) // Why? :D
#define inf 0x7fffffff
int arr[N];
int tree[MAX];
int lazy[MAX];
/**
* Build and init tree
*/
void build_tree(int node, int a, int b) {
if(a > b) return; // Out of range
if(a == b) { // Leaf node
tree[node] = arr[a]; // Init value
return;
}
build_tree(node*2, a, (a+b)/2); // Init left child
build_tree(node*2+1, 1+(a+b)/2, b); // Init right child
tree[node] = max(tree[node*2], tree[node*2+1]); // Init root value
}
/**
* Increment elements within range [i, j] with value value
*/
void update_tree(int node, int a, int b, int i, int j, int value) {
if(lazy[node] != 0) { // This node needs to be updated
tree[node] += lazy[node]; // Update it
if(a != b) {
lazy[node*2] += lazy[node]; // Mark child as lazy
lazy[node*2+1] += lazy[node]; // Mark child as lazy
}
lazy[node] = 0; // Reset it
}
if(a > b || a > j || b < i) // Current segment is not within range [i, j]
return;
if(a >= i && b <= j) { // Segment is fully within range
tree[node] += value;
if(a != b) { // Not leaf node
lazy[node*2] += value;
lazy[node*2+1] += value;
}
return;
}
update_tree(node*2, a, (a+b)/2, i, j, value); // Updating left child
update_tree(1+node*2, 1+(a+b)/2, b, i, j, value); // Updating right child
tree[node] = max(tree[node*2], tree[node*2+1]); // Updating root with max value
}
/**
* Query tree to get max element value within range [i, j]
*/
int query_tree(int node, int a, int b, int i, int j) {
if(a > b || a > j || b < i) return -inf; // Out of range
if(lazy[node] != 0) { // This node needs to be updated
tree[node] += lazy[node]; // Update it
if(a != b) {
lazy[node*2] += lazy[node]; // Mark child as lazy
lazy[node*2+1] += lazy[node]; // Mark child as lazy
}
lazy[node] = 0; // Reset it
}
if(a >= i && b <= j) // Current segment is totally within range [i, j]
return tree[node];
int q1 = query_tree(node*2, a, (a+b)/2, i, j); // Query left child
int q2 = query_tree(1+node*2, 1+(a+b)/2, b, i, j); // Query right child
int res = max(q1, q2); // Return final result
return res;
}
int main() {
for(int i = 0; i < N; i++) arr[i] = 1;
build_tree(1, 0, N-1);
memset(lazy, 0, sizeof lazy);
update_tree(1, 0, N-1, 0, 6, 5); // Increment range [0, 6] by 5. here 0, N-1 represent the current range.
update_tree(1, 0, N-1, 7, 10, 12); // Incremenet range [7, 10] by 12. here 0, N-1 represent the current range.
update_tree(1, 0, N-1, 10, N-1, 100); // Increment range [10, N-1] by 100. here 0, N-1 represent the current range.
cout << query_tree(1, 0, N-1, 0, N-1) << endl; // Get max element in range [0, N-1]
}
۹۴/۰۹/۱۹